• Предмет: Алгебра
  • Автор: Natsya9124
  • Вопрос задан 10 лет назад

Докажите, что выражение принимает лишь положительное значение:
1) 4m^2-4m+4
2)a^2+b^2+c^2-2bc+3

Ответы

Ответ дал: Лотарингская
0
4m^2-4m+4=(2m-1)^2+3>0

(квадрат выражения всегда неотрицательный, т.е. (2m-1)^2≥0, с учетом прибавления к нему положительного числа, получаем всегда положительное значение всего выражения)

a^2+b^2+c^2-2bc+3=a^2+(b-c)^2+3>0

здесь a^2≥0,   (b-c)^2≥0
их сумма и положительного числа всегда положительна
Вас заинтересует