• Предмет: Геометрия
  • Автор: sharapov2323
  • Вопрос задан 10 лет назад

Периметр правильного шестиугольника вписанного в окружность,равен 48м.Найди сторону квадрата,вписанного в ту же окружность

Ответы

Ответ дал: seleznev11
0
Зная периметр правильного шестиугольника найдем его сторону 48/6=8 м
Так как сторона правильного шестиугольника равна радиусу описывающей его окружности то R=8 м.
Из формулы нахождения радиуса описанной окружности квадрата R=a/√2 выразим сторону квадрата: a=R*√2 а=8√2 м  (или приблизительно 11,31 м)



Вас заинтересует