• Предмет: Геометрия
  • Автор: katkaz99
  • Вопрос задан 10 лет назад

прямая параллельная основаниям трапеции авсд пересекает ее боковые стороны ab cd в точках e и f, найдите длину отрезка ef, если ad = 45, bc= 20, cf:df = 4:1

Ответы

Ответ дал: lidiyakazankina
0
Проводим прямую СК,параллельную боковой стороне АВ, получаем параллелограм АВСК. Верхнее основание трапеции ВС=20, значит ВС=АК=ЕО=20(О- точка пересечения прямых ЕF и СК). Далее Δ КСD подобен Δ ОСF по 2 углам( угол ОСF-общий, угол СОF=СКD-как соответственные углы при параллельных прямых ЕF и AD и секущей СК) CF/CD=OF/KD. Пусть 1 часть х, тогда CF=4x, FD=x, отсюда CD= 4x +x= 5x. Подставляем 4х/5х=OF/25 ( KD= AD- AK= 45-20=25)OF= 4x*25/5x=20. EF= EO+OF= 20+20=40
Вас заинтересует