в треугольнике АBC медиана AD равна половине стороны BC . Докажите, что треугольник ABC прямоугольный
Ответы
Ответ дал:
0
В равнобедренном треугольнике АВD (АD=ВD):
<В=<BAD=(180°-<АDВ):2.
В равнобедренном треугольнике АСD (АD=DС):
<С=<СAD=(180°-<АDС):2.
<ADC=<B+<BAD (как внешний угол треугольника АВD)=2<B. Тогда
<С=<СAD=(180°-2<B):2. Или
2<C=180°-2<B или 2(<B+<C)=180°.
Тогда <B+<C=90° , а <A=(180°-90°=90°)
Что и требовалось доказать.
<В=<BAD=(180°-<АDВ):2.
В равнобедренном треугольнике АСD (АD=DС):
<С=<СAD=(180°-<АDС):2.
<ADC=<B+<BAD (как внешний угол треугольника АВD)=2<B. Тогда
<С=<СAD=(180°-2<B):2. Или
2<C=180°-2<B или 2(<B+<C)=180°.
Тогда <B+<C=90° , а <A=(180°-90°=90°)
Что и требовалось доказать.
Приложения:
Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад