докажите что если диагонали четырехугольника пересекаются, то его вершины лежат в одной плоскости
Ответы
Ответ дал:
0
Согласно известному мне определению, четырехугольник - это частный случай многоугольника, который по определению всегда весь лежит в одной плоскости. Однако можно догадаться, что речь идет просто о 4 точках с проведенными отрезками, тогда все решается в одно действие.
Пусть отрезки AC и BD пересекаются в точке О. Тогда, по соответствующей теореме, через пересекающиеся прямые AC и BD проходит какая-то плоскость. Прямые AC и BD целиком лежат в этой плоскости, значит, и лежащие на них точки лежат в ней: A, C, B, D. Таким образом, существует плоскость, проходящая через все вершины четырехугольника.
Пусть отрезки AC и BD пересекаются в точке О. Тогда, по соответствующей теореме, через пересекающиеся прямые AC и BD проходит какая-то плоскость. Прямые AC и BD целиком лежат в этой плоскости, значит, и лежащие на них точки лежат в ней: A, C, B, D. Таким образом, существует плоскость, проходящая через все вершины четырехугольника.
Вас заинтересует
2 года назад
2 года назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад