• Предмет: Алгебра
  • Автор: masha9715
  • Вопрос задан 10 лет назад

Решите неравенство
 2^{2x} +5* 2^{x} - 36 >0

Ответы

Ответ дал: Zhiraffe
0
Пусть  2^{x} =t, t>0, тогда неравенство примет вид:  t^{2} +5t-36>0 <=> (t-4)(t+9)>0. Получаем, что t∈(-∞;-9)∨(4;+∞). Так как t>0, то остается t∈(4;+∞).
Обратная замена дает неравенство:  2^x>4 <=> 2^x>2^2 <=> x>2.
Ответ: x∈(2;+∞).

Вас заинтересует
7 лет назад