Ответы
Ответ дал:
1
рассмотрим случай четных k
доказательство методом математической индукции
(База индукции)
:
25 при делении на 3 дает остаток 1 (25=8*3+1)
Выполняется
Гипотеза индукции
пусть при k=n утверждение верно, т.е. справедливо утверждение
при четном n при делении на 3 дает остаток 1
Индукционный переход. n+2 - следующее последовательное четное число после числа n
Докажем что тогда
дает остаток 1
Так как
при делении на 3 дает остаток 1 (согласно нашей гипотезе)
25 при делении на 3 дает остаток 1 (убедились выше)
Поэтому по правилу деления произведения на число остаток будет равен остатку от деления произведения остатков множителей
так как 1*1=1, а 1 при делении на 3 дает остаток 1
то и число
даст остаток 1
По принципу математической индукции доказано
Аналогично для нечетных доказывается для нечетных
[кратко 5 при делении на 3 дает остаток 2)
(5^{n}*5^2)
5^n - остаток 2
25 - остаток 1
2*1=2 , 2 при делении на 3 остаток 2]
доказательство методом математической индукции
(База индукции)
25 при делении на 3 дает остаток 1 (25=8*3+1)
Выполняется
Гипотеза индукции
пусть при k=n утверждение верно, т.е. справедливо утверждение
Индукционный переход. n+2 - следующее последовательное четное число после числа n
Докажем что тогда
Так как
25 при делении на 3 дает остаток 1 (убедились выше)
Поэтому по правилу деления произведения на число остаток будет равен остатку от деления произведения остатков множителей
так как 1*1=1, а 1 при делении на 3 дает остаток 1
то и число
По принципу математической индукции доказано
Аналогично для нечетных доказывается для нечетных
[кратко 5 при делении на 3 дает остаток 2)
(5^{n}*5^2)
5^n - остаток 2
25 - остаток 1
2*1=2 , 2 при делении на 3 остаток 2]
m1greatcool:
Слушай а через классы чисел типа 3n+1 и 3n+2 тоже же можно? Просто сейчас в голову пришло. А индукцией я что-то не додумался.
"(База индукции) " - что это значит.
это был вопрос =)
проверка для (первого) первых k что утверждение вообще выполняется
можно если нестрого разбить на (5^2)*(5^2)*(5^2)*....(5^2) --в случае четных, каждое 5^2 даст остаток 1, их произведение 1 даст остаток 1, опять таки правило остатка от деления произведения
Благодарю, спасибо. Я не слишком силен в ТЧ, осваиваюсь.
Вас заинтересует
2 года назад
2 года назад
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад