Докажите, что биссектрисы острых острых углов прямоугольного треугольника пересекаются под углом 45 градусов.
Аноним:
Точно 45? Они пересекаются под углом 135 градусов.
Ответы
Ответ дал:
16
Пусть ABC - прямоугольный треугольник, угол C - прямой. Из вершин A и B проведены биссектрисы пересекающиеся в точке О. Биссектриса из A пересекает сторону BC в точке N, биссектриса из B сторону AC в точке M.
Сумма острых углов прямоугольного треугольника равна 90 градусов. Значит, сумма углов, образованных биссектрисами, равна 90:2 = 45 градусов. Тогда в треугольнике AOB угол O равен 180-45 = 135 градусов. Углы BON и AOM равны 180-135 = 45 градусов, как смежные.
Сумма острых углов прямоугольного треугольника равна 90 градусов. Значит, сумма углов, образованных биссектрисами, равна 90:2 = 45 градусов. Тогда в треугольнике AOB угол O равен 180-45 = 135 градусов. Углы BON и AOM равны 180-135 = 45 градусов, как смежные.
Вас заинтересует
2 года назад
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад