• Предмет: Алгебра
  • Автор: nadya12345678
  • Вопрос задан 2 года назад

найдите наибольшие значение функции y=x^2-10x+6lnx-13 на отрезке ( 1/11;12/11)

Ответы

Ответ дал: Аноним
4
Находим производную функции:

y '= 2*x - 10 + 6/x
Приравниваем ее к нулю:
2*x - 10 + 6/x =0
Решаем уравнение, из которого находим Х.
Найденный X=(5÷√13)/2
Максимальное значение функция принимает в точке Х=(5-√13)/2
Y≈-21,65

Минимальное - в точке Х=(5+√13)/2
Y≈-21,25
Вас заинтересует