Ответы
Ответ дал:
10
f(x) = ln(ctg x)
f'(x) = (1/ctg x)·(-1/sin²x) = -sin x/(cos x ·sin²x) = -1/(cos x · sin x) = -2/sin 2x
f'(x) = (1/ctg x)·(-1/sin²x) = -sin x/(cos x ·sin²x) = -1/(cos x · sin x) = -2/sin 2x
Ответ дал:
3
ln(x)=1/x
f"(x)=ln(ctgx)=1/ctgx × (ctgx)"= 1/ctgx × -1/sin²x=sin/cos× -1/sin²x=(синусы сокращаем и получается =-1/cosx*sinx=-1/2sin2x÷2=-2/2sin2x=-1/sin2x
f"(x)=ln(ctgx)=1/ctgx × (ctgx)"= 1/ctgx × -1/sin²x=sin/cos× -1/sin²x=(синусы сокращаем и получается =-1/cosx*sinx=-1/2sin2x÷2=-2/2sin2x=-1/sin2x
Вас заинтересует
2 года назад
2 года назад
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
9 лет назад