Функция задана формулой y=x^34. Выберите верное утверждение: 1)функция возрастает на (-∞;0) 2)областью значений функции является множество всех действительный чисел 3)функция убывает на [0;+∞) 4)y=или>0
Ответы
Ответ дал:
0
Чтобы исследовать функцию на возрастание и убывание, найдем производную этой функции
y'=(x³⁴)'=34*x³³
y'>0 функция возрастает
y'<0 функция убывает
Функция убывает на промежутке
34*x³<0
x<0
x∈(-∞; 0)
Функция возрастает
34х³>0
x>0
x∈(0; +∞)
Значит утверждение 1) функция возрастает на (-∞;0) неверно, также как утверждение 3) функция убывает на [0;+∞) неверное
2)областью значений функции является множество всех действительный чисел
Область определения функции
D(f)=(-∞; +∞).
Значит утверждение верное.
Ответ верное утверждение 2)
y'=(x³⁴)'=34*x³³
y'>0 функция возрастает
y'<0 функция убывает
Функция убывает на промежутке
34*x³<0
x<0
x∈(-∞; 0)
Функция возрастает
34х³>0
x>0
x∈(0; +∞)
Значит утверждение 1) функция возрастает на (-∞;0) неверно, также как утверждение 3) функция убывает на [0;+∞) неверное
2)областью значений функции является множество всех действительный чисел
Область определения функции
D(f)=(-∞; +∞).
Значит утверждение верное.
Ответ верное утверждение 2)
Вас заинтересует
2 года назад
2 года назад
8 лет назад
8 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад