1) sin²x-sinx=2 ; 2) 2cos²x=1+sinx; 3) 4cos2x-sin2x=0 ; 4) sin²x-5sinxcosx+4cos²x=0 ;
5) cosx+cos3x+cos2x=0
Ответы
Ответ дал:
1
1)sin²x-sinx-2=0
sinx=t |t|≤1
t²-t-2=0
t1=2 - посторонний корень
t2=-1
sinx=-1
x=-pi/2+2pi*n
2)2-2sin²x-sinx-1=0
-2sin²x-sinx+1=0
sinx=t |t|≤1
-2t²-t+1=0
t1=-1
t2=1/2
sinx=-1 sinx=1/2
x=-pi/2+2pi*n x=(-1)^n*pi/6+pi*n
3) 4cos2x-sin2x=0 (однородное уравнение 1 степени - поделим обе части уравнения на cos2x≠0)
4-tg2x=0
tg2x=4
2x=arctg4+pi*n
x=1/2*arctg4+pi*n/2
4)sin²x-5sinxcosx+4cos²x=0 (однородное уравнение второй степени - поделим на cos²x≠0)
tg²x-5tgx+4=0
tgx=1 tgx=4
x=pi/4+pi*n x=arctg4+pi*n
5)2cos2x*cosx+cos2x=0
cos2x(2cosx+1)=0
cos2x=0 2cosx+1=0
2x=pi*n cosx=-1/2
x=pi*n/2 x=+-2pi/3+2pi*n
sinx=t |t|≤1
t²-t-2=0
t1=2 - посторонний корень
t2=-1
sinx=-1
x=-pi/2+2pi*n
2)2-2sin²x-sinx-1=0
-2sin²x-sinx+1=0
sinx=t |t|≤1
-2t²-t+1=0
t1=-1
t2=1/2
sinx=-1 sinx=1/2
x=-pi/2+2pi*n x=(-1)^n*pi/6+pi*n
3) 4cos2x-sin2x=0 (однородное уравнение 1 степени - поделим обе части уравнения на cos2x≠0)
4-tg2x=0
tg2x=4
2x=arctg4+pi*n
x=1/2*arctg4+pi*n/2
4)sin²x-5sinxcosx+4cos²x=0 (однородное уравнение второй степени - поделим на cos²x≠0)
tg²x-5tgx+4=0
tgx=1 tgx=4
x=pi/4+pi*n x=arctg4+pi*n
5)2cos2x*cosx+cos2x=0
cos2x(2cosx+1)=0
cos2x=0 2cosx+1=0
2x=pi*n cosx=-1/2
x=pi*n/2 x=+-2pi/3+2pi*n
Вас заинтересует
1 год назад
1 год назад
6 лет назад
6 лет назад
8 лет назад