• Предмет: Геометрия
  • Автор: киса276
  • Вопрос задан 10 лет назад

Диоганали четырехугольника равны 9 и 31. Найдите периметр четырехугольника ,вершинами которого являются середины сторон данного четырехугольника

Ответы

Ответ дал: Hrisula
0

Рассмотрим рисунок.

Красным обозначены отрезки, соединяющие середины сторон четырехугольника АВСD.
Нетрудно заметить, что эти отрезки - средние линии треугольников АВС, АDC, ABD, BCD.
Получившийся четырехугольник имеет две стороны, равные каждая половине BD , и две - равные каждая половине АС.
Следовательно, периметр этого четырехугольника равен сумме диагоналей четырехугольника АВСD и равен 31+9=40.


Кроме того, этот четырехугольник - параллелограмм, т.к. каждая пара противоположных сторон параллельна одной из диагоналей исходного четырехугольника и потому параллельна друг другу.

 

Приложения:
Вас заинтересует