Ответы
Ответ дал:
5
Решение всех 6-ти номеров:

![cosx=t;t\in [-1;1] cosx=t;t\in [-1;1]](https://tex.z-dn.net/?f=cosx%3Dt%3Bt%5Cin+%5B-1%3B1%5D)




Второй корень не принадлежит промежутку![t\in [-1;1] t\in [-1;1]](https://tex.z-dn.net/?f=t%5Cin+%5B-1%3B1%5D)








![cosx=t;t\in [-1;1] cosx=t;t\in [-1;1]](https://tex.z-dn.net/?f=cosx%3Dt%3Bt%5Cin+%5B-1%3B1%5D)




![\left[\begin{array}{ccc}t=1\\t=-\frac{1}5\end{array}\right] =\ \textgreater \ \left[\begin{array}{ccc}cosx=1\\cosx=-\frac{1}5\end{array}\right] =\ \textgreater \ \left[\begin{array}{ccc}x=2\pi n;n\in Z\\x=\piбarccos(\frac{1}5)+2\pi n;n\in Z\end{array}\right] \left[\begin{array}{ccc}t=1\\t=-\frac{1}5\end{array}\right] =\ \textgreater \ \left[\begin{array}{ccc}cosx=1\\cosx=-\frac{1}5\end{array}\right] =\ \textgreater \ \left[\begin{array}{ccc}x=2\pi n;n\in Z\\x=\piбarccos(\frac{1}5)+2\pi n;n\in Z\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dt%3D1%5C%5Ct%3D-%5Cfrac%7B1%7D5%5Cend%7Barray%7D%5Cright%5D+%3D%5C+%5Ctextgreater+%5C+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcosx%3D1%5C%5Ccosx%3D-%5Cfrac%7B1%7D5%5Cend%7Barray%7D%5Cright%5D+%3D%5C+%5Ctextgreater+%5C+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%3D2%5Cpi+n%3Bn%5Cin+Z%5C%5Cx%3D%5Cpi%D0%B1arccos%28%5Cfrac%7B1%7D5%29%2B2%5Cpi+n%3Bn%5Cin+Z%5Cend%7Barray%7D%5Cright%5D)





![cosx=t;t\in [-1;1] cosx=t;t\in [-1;1]](https://tex.z-dn.net/?f=cosx%3Dt%3Bt%5Cin+%5B-1%3B1%5D)




![\left[\begin{array}{ccc}t=1\\t=\frac{1}2\end{array}\right] =\ \textgreater \ \left[\begin{array}{ccc}cosx=1\\cosx=\frac{1}2\end{array}\right] =\ \textgreater \ \left[\begin{array}{ccc}x=2\pi n;n\in Z\\x=б\frac{\pi}3+2\pi n;n\in Z\end{array}\right] \left[\begin{array}{ccc}t=1\\t=\frac{1}2\end{array}\right] =\ \textgreater \ \left[\begin{array}{ccc}cosx=1\\cosx=\frac{1}2\end{array}\right] =\ \textgreater \ \left[\begin{array}{ccc}x=2\pi n;n\in Z\\x=б\frac{\pi}3+2\pi n;n\in Z\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dt%3D1%5C%5Ct%3D%5Cfrac%7B1%7D2%5Cend%7Barray%7D%5Cright%5D+%3D%5C+%5Ctextgreater+%5C+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcosx%3D1%5C%5Ccosx%3D%5Cfrac%7B1%7D2%5Cend%7Barray%7D%5Cright%5D+%3D%5C+%5Ctextgreater+%5C+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%3D2%5Cpi+n%3Bn%5Cin+Z%5C%5Cx%3D%D0%B1%5Cfrac%7B%5Cpi%7D3%2B2%5Cpi+n%3Bn%5Cin+Z%5Cend%7Barray%7D%5Cright%5D)





![cosx=t;t\in [-1;1] cosx=t;t\in [-1;1]](https://tex.z-dn.net/?f=cosx%3Dt%3Bt%5Cin+%5B-1%3B1%5D)




![\left[\begin{array}{ccc}t=1\\t=\frac{1}5\end{array}\right] =\ \textgreater \ \left[\begin{array}{ccc}cosx=1\\cosx=\frac{1}5\end{array}\right] =\ \textgreater \ \left[\begin{array}{ccc}x=2\pi n;n\in Z\\x=бarccos(\frac{1}5)+2\pi n;n\in Z\end{array}\right] \left[\begin{array}{ccc}t=1\\t=\frac{1}5\end{array}\right] =\ \textgreater \ \left[\begin{array}{ccc}cosx=1\\cosx=\frac{1}5\end{array}\right] =\ \textgreater \ \left[\begin{array}{ccc}x=2\pi n;n\in Z\\x=бarccos(\frac{1}5)+2\pi n;n\in Z\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dt%3D1%5C%5Ct%3D%5Cfrac%7B1%7D5%5Cend%7Barray%7D%5Cright%5D+%3D%5C+%5Ctextgreater+%5C+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcosx%3D1%5C%5Ccosx%3D%5Cfrac%7B1%7D5%5Cend%7Barray%7D%5Cright%5D+%3D%5C+%5Ctextgreater+%5C+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%3D2%5Cpi+n%3Bn%5Cin+Z%5C%5Cx%3D%D0%B1arccos%28%5Cfrac%7B1%7D5%29%2B2%5Cpi+n%3Bn%5Cin+Z%5Cend%7Barray%7D%5Cright%5D)




![cosx=t;t\in [-1;1] cosx=t;t\in [-1;1]](https://tex.z-dn.net/?f=cosx%3Dt%3Bt%5Cin+%5B-1%3B1%5D)




Первый корень не принадлежит промежутку![t\in [-1;1] t\in [-1;1]](https://tex.z-dn.net/?f=t%5Cin+%5B-1%3B1%5D)








![\left[\begin{array}{ccc}cosx=0\\cosx=-\frac{5}4\end{array}\right] \left[\begin{array}{ccc}cosx=0\\cosx=-\frac{5}4\end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcosx%3D0%5C%5Ccosx%3D-%5Cfrac%7B5%7D4%5Cend%7Barray%7D%5Cright%5D+)
не принадлежит промежутку ![t\in [-1;1] t\in [-1;1]](https://tex.z-dn.net/?f=t%5Cin+%5B-1%3B1%5D)

Второй корень не принадлежит промежутку
Первый корень не принадлежит промежутку
Вас заинтересует
2 года назад
2 года назад
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад