Ответы
Ответ дал:
1
Метод рационализации. Если сравнивают
c 0, например,
, то это равносильно решению неравенства:

![log_{(x-3)^2}{(3x^2+7x+1)} \geq 0\; ,\; \; ODZ:\; \left \{ {{(x-3)^2\ \textgreater \ 0,\; (x-3)^2\ne 1} \atop {3x^2+7x+1\ \textgreater \ 0}} \right. \; \to \\\\ \left \{ {{x\ne 3,\; x\ne 4,\; x\ne 2} \atop {3x^2+7x+1\ \textgreater \ 0}} \right. \\\\(((x-3)^2-1)((3x^2+7x+1)-1) \geq 0\\\\(x^2-6x+8)(3x^2+7x) \geq 0\\\\(x-4)(x-2)\cdot x\cdot (3x+7) \geq 0\\\\+++(-\frac{7}{3})---(0)+++(2)---(4)+++\\\\x\in (-\infty,-\frac{7}{3}\, ]U[\, 0,2\, ]U[\, 4,+\infty)\\\\x\ne 3,\; x\ne 4,\; x\ne 2\\\\x\in (-\infty,\frac{-7-\sqrt{37}}{6})U(\frac{-7+\sqrt{37}}{6},+\infty) log_{(x-3)^2}{(3x^2+7x+1)} \geq 0\; ,\; \; ODZ:\; \left \{ {{(x-3)^2\ \textgreater \ 0,\; (x-3)^2\ne 1} \atop {3x^2+7x+1\ \textgreater \ 0}} \right. \; \to \\\\ \left \{ {{x\ne 3,\; x\ne 4,\; x\ne 2} \atop {3x^2+7x+1\ \textgreater \ 0}} \right. \\\\(((x-3)^2-1)((3x^2+7x+1)-1) \geq 0\\\\(x^2-6x+8)(3x^2+7x) \geq 0\\\\(x-4)(x-2)\cdot x\cdot (3x+7) \geq 0\\\\+++(-\frac{7}{3})---(0)+++(2)---(4)+++\\\\x\in (-\infty,-\frac{7}{3}\, ]U[\, 0,2\, ]U[\, 4,+\infty)\\\\x\ne 3,\; x\ne 4,\; x\ne 2\\\\x\in (-\infty,\frac{-7-\sqrt{37}}{6})U(\frac{-7+\sqrt{37}}{6},+\infty)](https://tex.z-dn.net/?f=log_%7B%28x-3%29%5E2%7D%7B%283x%5E2%2B7x%2B1%29%7D+%5Cgeq+0%5C%3B+%2C%5C%3B+%5C%3B+ODZ%3A%5C%3B++%5Cleft+%5C%7B+%7B%7B%28x-3%29%5E2%5C+%5Ctextgreater+%5C+0%2C%5C%3B+%28x-3%29%5E2%5Cne+1%7D+%5Catop+%7B3x%5E2%2B7x%2B1%5C+%5Ctextgreater+%5C+0%7D%7D+%5Cright.+%5C%3B+%5Cto+%5C%5C%5C%5C+%5Cleft+%5C%7B+%7B%7Bx%5Cne+3%2C%5C%3B+x%5Cne+4%2C%5C%3B+x%5Cne+2%7D+%5Catop+%7B3x%5E2%2B7x%2B1%5C+%5Ctextgreater+%5C+0%7D%7D+%5Cright.+%5C%5C%5C%5C%28%28%28x-3%29%5E2-1%29%28%283x%5E2%2B7x%2B1%29-1%29+%5Cgeq+0%5C%5C%5C%5C%28x%5E2-6x%2B8%29%283x%5E2%2B7x%29+%5Cgeq+0%5C%5C%5C%5C%28x-4%29%28x-2%29%5Ccdot+x%5Ccdot+%283x%2B7%29+%5Cgeq+0%5C%5C%5C%5C%2B%2B%2B%28-%5Cfrac%7B7%7D%7B3%7D%29---%280%29%2B%2B%2B%282%29---%284%29%2B%2B%2B%5C%5C%5C%5Cx%5Cin+%28-%5Cinfty%2C-%5Cfrac%7B7%7D%7B3%7D%5C%2C+%5DU%5B%5C%2C+0%2C2%5C%2C+%5DU%5B%5C%2C+4%2C%2B%5Cinfty%29%5C%5C%5C%5Cx%5Cne+3%2C%5C%3B+x%5Cne+4%2C%5C%3B+x%5Cne+2%5C%5C%5C%5Cx%5Cin+%28-%5Cinfty%2C%5Cfrac%7B-7-%5Csqrt%7B37%7D%7D%7B6%7D%29U%28%5Cfrac%7B-7%2B%5Csqrt%7B37%7D%7D%7B6%7D%2C%2B%5Cinfty%29)
Вас заинтересует
2 года назад
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
9 лет назад