• Предмет: Математика
  • Автор: mill1408
  • Вопрос задан 2 года назад

составить уравнение касательной проведенной к графику функции y=3x-x^3 в точке с абсциссой x0=0

Ответы

Ответ дал: yellok
1
уравнение касательной проведенной к графику функции y=f(x) в точке с абсциссой x=x₀ имеет следующий вид:
y=f(x₀)+f '(x₀)(x-x₀)
сначала найдем  производную y'=f '(x)
y=3x-x³   ⇒  y' =f '(x) =3-3x²
поскольку x₀=0  ⇒
f '(x₀)= f '(0)=3-3*0²=3-0=3
f(x₀)=f(0)=3*0-3*0²=0
получим: y=f(x₀)+f '(x₀)(x-x₀)=0+3(x-0)=3x
y=3x будет уравнение касательной проведенной к графику функции y=3x-x³ в точке с абсциссой x₀=0 имеет следующий вид:


Вас заинтересует