• Предмет: Геометрия
  • Автор: v887
  • Вопрос задан 2 года назад

Стороны треугольника ABC пересекаются прямой MN так, что MN||AC. Периметры треугольника ABC MBN относятся как 3:1. Площадь треугольника ABC равна 288. Найдите площадь треугольника MBN.

Ответы

Ответ дал: tanya2512
6
Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному, следовательно ΔАВС подобен ΔМВN.
Отношение периметров подобных треугольников равно коэффициенту подобия: Равс/Рмвn=3
Отношение площадей подобных треугольников равно квадрату коэффициента подобия: Sавс/Sмвn=3².
Значит Sмвn=Sавс/9=288/9=32
Ответ: 32

v887: Спасибо большое мисс Таня
Вас заинтересует