В правильной шестиугольной призме, сторона основания равна 6, а боковое ребро равно 5.Найдите расстояние между двумя вершинами
Аноним:
Между какими вершинами?
Ответы
Ответ дал:
0
ABCDFEA₁...E₁ -правильная призма
АВ=6, АА₁=5
прямоугольный ΔBFF₁:
BF=12 (BO*2, O -точка пересечения диагоналей основания призмы)
FF₁=5 (длина бокового ребра призмы)
по теорема Пифагора: (BF₁)²=12²+5²
BF₁=13
прямоугольный ΔAFF₁:
FF₁=5
AF по теореме косинусов из ΔAEF: AF²=6²+6²-2*6*6*cos120°
AF²=36+36-72*(-1/2), AF²=108
или по теореме Пифагора из прямоугольного ΔBAF:
AF²=BF²-AB², AF²=12²-6²,AF²=108
(AF₁)²=108+25
AF₁=√133
АВ=6, АА₁=5
прямоугольный ΔBFF₁:
BF=12 (BO*2, O -точка пересечения диагоналей основания призмы)
FF₁=5 (длина бокового ребра призмы)
по теорема Пифагора: (BF₁)²=12²+5²
BF₁=13
прямоугольный ΔAFF₁:
FF₁=5
AF по теореме косинусов из ΔAEF: AF²=6²+6²-2*6*6*cos120°
AF²=36+36-72*(-1/2), AF²=108
или по теореме Пифагора из прямоугольного ΔBAF:
AF²=BF²-AB², AF²=12²-6²,AF²=108
(AF₁)²=108+25
AF₁=√133
Вас заинтересует
2 года назад
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад