• Предмет: Алгебра
  • Автор: Аноним
  • Вопрос задан 10 лет назад

При каких значениях а дробь (√а-√5)/(а-5) принимает наибольшее значение

Ответы

Ответ дал: Лотарингская
0
упростим сначала дробь
 frac{ sqrt{a}- sqrt{5}  }{a-5} = frac{sqrt{a}- sqrt{5} }{(sqrt{a}- sqrt{5} )cdot(sqrt{a}+sqrt{5} )} = frac{1}{sqrt{a}+ sqrt{5} }
дробь принимает наибольшее значении, если знаменатель принимает наименьшее значение
т.к. корень всегда неотриц. число, значит наименьшее значение знаменателя достигается при а=0
Вас заинтересует