катети прямокутного трикутника дорівнюють 30 см і 40 см.знайдіть синус, косинус, тангенс, котангенс кута між медіаною і висотою проведеної до гіпотенузи
Ответы
Ответ дал:
0
Катеты прямоугольного треугольника равны 30 см и 40 см. Найдите синус, косинус, тангенс, котангенс угла между медианой и высотой, проведенных к гипотенузе.
---------
Пусть дан треугольник АВС. ВС=30 см, АС=40 см. Из отношения катетов 3:4 следует, что этот треугольник - египетский, и АМ=50 см ( по т. Пифагора, естественно, также АВ=50 см)
Длина медианы прямоугольного треугольника из прямого угла к гипотенузе равна ее половине. ⇒ СМ=ВМ=АМ=25 см
∆ АМС - равнобедренный.
Высота прямоугольного треугольника делит его на подобные треугольники.
∆ ВНС~∆ ВСН, коэффициент подобия k= ВС:АВ=0,6 ⇒
ВН=СН*0,6=18 см
СН=АС*0,6=24 см
МН=ВМ-ВН=25-18=7 см
sin ∠HCM=MH:CM=7/25
cos ∠HCM=CH:CM=24/25
tg ∠HCM=HM:HC=7/24
ctg ∠HCM=HC:HM=24/7
---------
Пусть дан треугольник АВС. ВС=30 см, АС=40 см. Из отношения катетов 3:4 следует, что этот треугольник - египетский, и АМ=50 см ( по т. Пифагора, естественно, также АВ=50 см)
Длина медианы прямоугольного треугольника из прямого угла к гипотенузе равна ее половине. ⇒ СМ=ВМ=АМ=25 см
∆ АМС - равнобедренный.
Высота прямоугольного треугольника делит его на подобные треугольники.
∆ ВНС~∆ ВСН, коэффициент подобия k= ВС:АВ=0,6 ⇒
ВН=СН*0,6=18 см
СН=АС*0,6=24 см
МН=ВМ-ВН=25-18=7 см
sin ∠HCM=MH:CM=7/25
cos ∠HCM=CH:CM=24/25
tg ∠HCM=HM:HC=7/24
ctg ∠HCM=HC:HM=24/7
Приложения:
Вас заинтересует
1 год назад
1 год назад
6 лет назад
9 лет назад
9 лет назад
9 лет назад