Существует ли прямоугольник, длины сторон которого выражены натуральными числами в сантиметрах, причём одна из них 1 см длиннее другой, и площадь которого
равна 12345 см кв
Помогите очень сильно надо!!!!Пожалуйста!!!!
Ответы
Ответ дал:
0
Пусть х - длина меньшей стороны.
Тогда площадь = х(х+1) = 12345
Равносильно x^2 + x - 12345 = 0
D = 1 + 12345*4 = 49381.
x = (1 + sqrt(D))/2. Число натуральное, когда корень из D - число натуральное. В нашем случае это не так, поэтому прямоугольника, удовлетворяющего условиям, не существует.
Ответ дал:
0
Спасибо!!!
Ответ дал:
0
А что обозначает ^
Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад