Ответы
Ответ дал:
0
Примем за базу индукции n=5. Проверим истинность выражения при n=5:
.
Получили верное неравенство => базис доказан.
Теперь предположим, что неравенство справедливо при некотором n=k>=5, т.е. выполняется:
.
Доказав истинность выражения при n=k+1, в соответствии с принципом математической индукции, мы докажем и истинность выражения при n>=5.

Используем наше предположение:
=>
=> 
.
Проверим истинность последнего неравенства:

.
Т.е. последнее неравенство верно для всех k>0.8, но, по нашему предположению, k>=5, а значит, выражение истинно при всех n=k+1, что и требовалось доказать.
Получили верное неравенство => базис доказан.
Теперь предположим, что неравенство справедливо при некотором n=k>=5, т.е. выполняется:
Доказав истинность выражения при n=k+1, в соответствии с принципом математической индукции, мы докажем и истинность выражения при n>=5.
Используем наше предположение:
Проверим истинность последнего неравенства:
Т.е. последнее неравенство верно для всех k>0.8, но, по нашему предположению, k>=5, а значит, выражение истинно при всех n=k+1, что и требовалось доказать.
Вас заинтересует
2 года назад
7 лет назад
9 лет назад
10 лет назад
10 лет назад