в правильный четырехугольник пирамиде SABCD точка О - центр основания, S вершина, CS=17, BD=16. Найдите длину отрезка SO.
Ответы
Ответ дал:
0
SO - высота, ABCD - квадрат (по определению правильной пирамиды)
AC=BD, AO=OC=¹/₂AC=¹/₂BD (свойство диагоналей квадрата)
ΔSOC: ∠SOC=90°
CS²=OC²+SO² (теорема Пифагора)
SO²=CS²-OC²=CS²-(¹/₂BD)²=17²-(16/2)²=17²-8²=(17-8)(17+8)=9·25=225
SO=15
AC=BD, AO=OC=¹/₂AC=¹/₂BD (свойство диагоналей квадрата)
ΔSOC: ∠SOC=90°
CS²=OC²+SO² (теорема Пифагора)
SO²=CS²-OC²=CS²-(¹/₂BD)²=17²-(16/2)²=17²-8²=(17-8)(17+8)=9·25=225
SO=15
Вас заинтересует
2 года назад
9 лет назад
10 лет назад