Ответы
                                            Ответ дал: 
                                                                                    
                                        
                                            
                                                
                                                
                                                
                                                    0
                                                
                                            
                                        
                                    
                                        пусть log5(x+2) = t
тогда: log1/5(x+2)=-log5(x+2)=-t
t^2-t-2<0
(t-2)(t+1)<0
t ∈ (-1;2)
log5(x+2) ∈ (-1;2)
(-1;2) =(log5(1/5) ; log5(25))
log5(1/5)<log5(x+2)< log5(25)
В силу того, что логарифмическая функция - монотонно возрастающая ( по основанию больше 1), мы получим:
0.2<x+2<25
-1.8<x<23
Одз: x+2>0
x>-2
Не дополняет и не урезает полученный интервал, значит:-1.8<x<23
                                        
                                        
                                тогда: log1/5(x+2)=-log5(x+2)=-t
t^2-t-2<0
(t-2)(t+1)<0
t ∈ (-1;2)
log5(x+2) ∈ (-1;2)
(-1;2) =(log5(1/5) ; log5(25))
log5(1/5)<log5(x+2)< log5(25)
В силу того, что логарифмическая функция - монотонно возрастающая ( по основанию больше 1), мы получим:
0.2<x+2<25
-1.8<x<23
Одз: x+2>0
x>-2
Не дополняет и не урезает полученный интервал, значит:-1.8<x<23
                                            Ответ дал: 
                                                                                    
                                        
                                            
                                                
                                                
                                                
                                                    0
                                                
                                            
                                        
                                    
                                        Спасибо огромное тебе)низкий поклон)
                                    
                                        
                                        
                                
                                            Ответ дал: 
                                                                                    
                                        
                                            
                                                
                                                
                                                
                                                    0
                                                
                                            
                                        
                                    
                                        не за что
                                    
                                        
                                        
                                Вас заинтересует
                
                        2 года назад
                    
                
                        2 года назад
                    
                
                        7 лет назад
                    
                
                        7 лет назад
                    
                
                        10 лет назад
                    
                
                        10 лет назад
                    
                
                        10 лет назад
                    
                
                        10 лет назад