• Предмет: Геометрия
  • Автор: Francusus
  • Вопрос задан 9 лет назад

Точки A и C лежат на одной прямой, точка B не лежит на этой прямой, но находится в одинаковых расстояниях от точек A и C.

Величина угла∡α=152°.

Определи:

1. вид треугольника ABC — .

 

2. величину∡β=°.

Ответить!

Приложения:

Ответы

Ответ дал: Andr1806
0

Так как расстояния ВА и ВС одинаковы, следовательно, треугольник равнобедренный. Углы α - внешний угол треугольника и в сумме с внутренним углом C, смежным с ним, составляет 180°. Следовательно, <C = 180°-152°=28°.

Углы при основании равнобедренного треугольника равны. Следовательно, <A=<C=28° a <B=180° - 2*28° = 124°. Треугольник АВС тупоугольный.

Углы β и <А вертикальные, следовательно, они равны.

Ответ: 1. Треугольник АВС тупоугольный, равнобедренный. 2  ∡β = 28°.

Вас заинтересует