Ответы
Ответ дал:
0
y(x) = 
y'(x) = 3x² - x³ = x²(3 - x)
Ищем критические точки: y'(x) = 0.
x²(3 - x) = 0
x₁ = 0
x₂ = 3
Методом интервалом находим знаки производной:
--------------------- ( 0 ) ----- ( 3 ) ------> x
+ + -
↑ ↑
точка перегиба локальный максимум функции
Поэтому:


График см. в приложенном файле.
y'(x) = 3x² - x³ = x²(3 - x)
Ищем критические точки: y'(x) = 0.
x²(3 - x) = 0
x₁ = 0
x₂ = 3
Методом интервалом находим знаки производной:
--------------------- ( 0 ) ----- ( 3 ) ------> x
+ + -
↑ ↑
точка перегиба локальный максимум функции
Поэтому:
График см. в приложенном файле.
Приложения:
Вас заинтересует
2 года назад
10 лет назад
10 лет назад
10 лет назад