• Предмет: Алгебра
  • Автор: Kristenyt368
  • Вопрос задан 9 лет назад

Найдите производную функции ф(х)= (2х-7)^8
Помогите пожалуйста, обьсните это как решить. Завтра самостоятельная, а я нечего в этом не понимаю(((

Ответы

Ответ дал: NNNLLL54
0
Формула для степенной функции:  (x^{n})'=ncdot x^{n-1} . Если в степень будет возводиться не переменная х, а какая-либо функция, то формула будет иметь немного другой вид:

u=u(x); ; to ; ; (u^{n})'=ncdot u^{n-1}cdot u'

В заданном примере в 8-ую степень возводиться линейная функция (2х-7).

y=(2x-7)^8; ,; ; u=2x-7; ,; ; (u^8)'=8u^7cdot u'\\y'=8(2x-7)^7cdot (2x-7)'=8(2x-7)^7cdot (2cdot x'-7')=\\=8(2x-7)^7cdot 2=16(2x-7)^7
Вас заинтересует