Дан выпуклый четырёхугольник ABCD. Отрезок MN соединяет середины его сторон AD и ВС. Известно, что 2MN = AB + CD. Докажите, что ABCD – трапеция, причём AB параллельна CD.
Ответы
Ответ дал:
0
Доказательством того, что средняя линия трапеции равна полусумме оснований служит то, что диагональ трапеции разрезает её на два треугольника, средние линии которых и образуют среднюю линию трапеции. Это условие работает только при параллельности противоположных сторон АВ и СД. Если АВ и СД не будут параллельными, то средние линии треугольников, разделённых диагональю не совпадут с MN.
Вывод: для того, чтобы 2MN=АВ+СД нужна параллельность сторон АВ и СД. Значит АВСД - трапеция.
Доказано.
Вывод: для того, чтобы 2MN=АВ+СД нужна параллельность сторон АВ и СД. Значит АВСД - трапеция.
Доказано.
Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
10 лет назад