• Предмет: Геометрия
  • Автор: samandarjan
  • Вопрос задан 9 лет назад

В парралелограм с тупым углом 135° вписан круг площадью 16П. Каков периметр параллелограмма? Пожалуйста срочно помогите

Ответы

Ответ дал: ssoxo
0
У четырёхугольника в который можно вписать окружность, суммы противолежащих сторон равны. Так как дан параллелограмм у которого противолежащие стороны параллельны и их суммы равны , то он - ромб.
Площадь окружности равна: S=πR² ⇒ R=√S/π=√16π/π=4. 
Диаметр D=2R=8.
Высота ромба равна диаметру вписанной в него окружности.
Пусть сторона ромба равна х, тогда его площадь можно выразить двумя способами:
S=x²·sin135° и S=xh, где h - высота ромба.
х²·sin135=xh,
x²√2/2-8х=0,
х²√2-16х=0,
х(х√2-16)=0
х₁=0. значение не подходит,
х√2-16=0,
х₂=8√2, подходящее значение.
Периметр ромба: Р=4х=32√2 - это ответ.
Ответ дал: samandarjan
0
Спасибо ссоxо
Вас заинтересует