Ответы
Ответ дал:
0
ОДЗ
cosx>0⇒x∈(-π/2+2πn;π/2+2πn,n∈z)
cos2x+3√2sinx-3=0
1-2sin²x+3√2sinx-3=0
sinx=a
2a²-3√2a+2=0
D=18-16=2
a1=(3√2+√2)/4=√2⇒sinx=√2>1 нет решения
a2=(3√2-√2)/4=√2/2⇒sinx=(-1)^n*π/4+πn,n∈z
С учетом ОДЗ
x=π/4+2πn,n∈z
cosx>0⇒x∈(-π/2+2πn;π/2+2πn,n∈z)
cos2x+3√2sinx-3=0
1-2sin²x+3√2sinx-3=0
sinx=a
2a²-3√2a+2=0
D=18-16=2
a1=(3√2+√2)/4=√2⇒sinx=√2>1 нет решения
a2=(3√2-√2)/4=√2/2⇒sinx=(-1)^n*π/4+πn,n∈z
С учетом ОДЗ
x=π/4+2πn,n∈z
Ответ дал:
0
cosx>0⇒x∈(-π/2+2πn;π/2+2πn,n∈z)
![cos2x+3 sqrt[n]{x} 2sinx-3=0 cos2x+3 sqrt[n]{x} 2sinx-3=0](https://tex.z-dn.net/?f=cos2x%2B3+sqrt%5Bn%5D%7Bx%7D+2sinx-3%3D0)





a2=(3√2-√2)/4=√2/2⇒sinx=(-1)^n*π/4+πn,n∈z
x=π/4+2πn,n∈z
==========================
a2=(3√2-√2)/4=√2/2⇒sinx=(-1)^n*π/4+πn,n∈z
x=π/4+2πn,n∈z
==========================
Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
10 лет назад
10 лет назад