Ответы
                                            Ответ дал: 
                                                                                    
                                        
                                            
                                                
                                                
                                                
                                                    0
                                                
                                            
                                        
                                    
                                        Вычтем из левой части неравенства правую. Теперь нам нужно доказать что а^3 + 1 - а^2 - а >=0 при а>=-1.
Преобразуем выражение:
а^3 - а^2 - а + 1 = а^2 (а-1) - (а-1) = (а-1)(а^2 - 1) = (а+1)(а-1)^2
Рассмотрим это выражение:
(а-1)^2 >= 0 т.к. в квадрате
(а+1) >= 0 т.к. по условию а>=-1.
Значит (а+1)(а-1)^2 >=0, тогда а^3 + 1 - а^2 - а >=0.
Ч.т.д.
                                    
                                        
                                        
                                Преобразуем выражение:
а^3 - а^2 - а + 1 = а^2 (а-1) - (а-1) = (а-1)(а^2 - 1) = (а+1)(а-1)^2
Рассмотрим это выражение:
(а-1)^2 >= 0 т.к. в квадрате
(а+1) >= 0 т.к. по условию а>=-1.
Значит (а+1)(а-1)^2 >=0, тогда а^3 + 1 - а^2 - а >=0.
Ч.т.д.
Вас заинтересует
                
                        2 года назад
                    
                
                        2 года назад
                    
                
                        7 лет назад
                    
                
                        9 лет назад
                    
                
                        10 лет назад