Ответы
Ответ дал:
0
1) Сделаем замену
. После ней уравнение примет вид 
Функция, стоящая в левой части, монотонно возрастает как сумма двух монотонно возрастающих функций, поэтому она принимает каждое своё значение только один раз, и у уравнения (относительно t) может быть не более одного корня. Подбором находим t = 4.

Ответ.
2) Домножим всё на x, перенесём в одну часть:

Рассматриваем производную функции, стоящей в левой части:

Производная отрицательна при
, положительна при
, поэтому функция на этих промежутках монотонно убывает и возрастает соответственно, и на каждом из этих промежутков может быть не более одного корня уравнения. Подбором находим x = -1, x = 2; других корней быть не может.
Ответ. x = -1, x = 2
3) Для того, чтобы корень существовал, требуется, чтобы подкоренное выражение было неотрицательно, а при таких x знаменатель строго положителен. При
функция, стоящая в левой части, монотонно убывает, значит, у уравнения есть не более одного корень. Корень опять можно угадать, это x = 1.
Ответ. x = 1.
Функция, стоящая в левой части, монотонно возрастает как сумма двух монотонно возрастающих функций, поэтому она принимает каждое своё значение только один раз, и у уравнения (относительно t) может быть не более одного корня. Подбором находим t = 4.
Ответ.
2) Домножим всё на x, перенесём в одну часть:
Рассматриваем производную функции, стоящей в левой части:
Производная отрицательна при
Ответ. x = -1, x = 2
3) Для того, чтобы корень существовал, требуется, чтобы подкоренное выражение было неотрицательно, а при таких x знаменатель строго положителен. При
Ответ. x = 1.
Ответ дал:
0
Во втором уравнении х= - 1 и х=2
Ответ дал:
0
Точно( Поправим...
Вас заинтересует
7 лет назад
7 лет назад
9 лет назад
10 лет назад