допоможіть розв`язати задачу:
основа рівнобедреного тупокутного трикутника дорівнює 18 см, а радіус описаного навколо нього кола-15 см. Знайти бічну сторону трикутника.
Ответы
Ответ дал:
0
Обозначим:
- треугольник АВС,
- высота на основание ВД,
- центр описанной окружности на высоте ВД точка О,
- радиус описанной окружности R = 15 см,
- основание треугольника АС = 18 см,
- боковая сторона х.
Находим ОД = √(R²-AД²) = √(15²-9²) = √(225-81) = √144 = 12 см.
Высота ВД = R+ОД = 15+12 = 27 см.
Тогда х = √(АД²+ВД²) = √(9²+27²) = √(81+729) = √ 810 = 9√10 = 28,4605.
- треугольник АВС,
- высота на основание ВД,
- центр описанной окружности на высоте ВД точка О,
- радиус описанной окружности R = 15 см,
- основание треугольника АС = 18 см,
- боковая сторона х.
Находим ОД = √(R²-AД²) = √(15²-9²) = √(225-81) = √144 = 12 см.
Высота ВД = R+ОД = 15+12 = 27 см.
Тогда х = √(АД²+ВД²) = √(9²+27²) = √(81+729) = √ 810 = 9√10 = 28,4605.
Вас заинтересует
2 года назад
7 лет назад
7 лет назад
9 лет назад
10 лет назад