Дан остроугольный треугольник ABC. Пусть H — точка пересечения его высот, O — центр описанной окружности, M — середина стороны BC, D — основание высоты, опущенной из вершины A. Оказалось, что четырехугольник HOMD является прямоугольником, причем HO=2, HD=2. Найдите BC.
Ответа на этот вопрос пока нет. Попробуйте найти его через форму поиска.
Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
10 лет назад
10 лет назад