За круглым столом сидят гномы. Гномы по кругу передают горшок с золотыми монетами. Первый гном взял из горшка 1 монету, второй – 2, третий – 3 и так далее. Каждый следующий брал ровно на одну монету больше. Оказалось, что на третьем круге гномы суммарно взяли на 338 монет больше, чем на первом. Какое наибольшее количество гномов могло сидеть за столом?
Ответы
Ответ дал:
0
Дубль два. Пусть гномов n.
1 круг начался с 1 и закончился n монет. Всего они взяли n(n+1)/2 монет.
2 круг начался с n+1 и закончился 2n монет. Сколько они взяли, не важно.
3 круг начался с 2n+1 и закончился 3n монет. Всего они взяли
n(2n+1+3n)/2=n(5n+1)/2 монет.
И это на 338 монет больше, чем на 1 круге.
n(n+1)/2+338=n(5n+1)/2
n(n+1)+676=n(5n+1)
n^2+n+676=5n^2+n
676=4n^2; n^2=169; n=13.
Ответ: 13 гномов, и это не наибольшее, а единственное решение.
1 круг начался с 1 и закончился n монет. Всего они взяли n(n+1)/2 монет.
2 круг начался с n+1 и закончился 2n монет. Сколько они взяли, не важно.
3 круг начался с 2n+1 и закончился 3n монет. Всего они взяли
n(2n+1+3n)/2=n(5n+1)/2 монет.
И это на 338 монет больше, чем на 1 круге.
n(n+1)/2+338=n(5n+1)/2
n(n+1)+676=n(5n+1)
n^2+n+676=5n^2+n
676=4n^2; n^2=169; n=13.
Ответ: 13 гномов, и это не наибольшее, а единственное решение.
Ответ дал:
0
Решается точно также. Напрягитесь и решите сами.
Ответ дал:
0
На 4 круге первый взял 3n+1, а последний 4n.
Ответ дал:
0
точно!
Ответ дал:
0
За круглым столом сидят гномы. Гномы по кругу передают горшок с золотыми монетами. Первый гном взял из горшка 1 монету, второй – 2, третий – 3 и так далее. Каждый следующий брал ровно на одну монету больше. Оказалось, что на четвертом круге гномы суммарно взяли на 675 монет больше, чем на первом. Какое наибольшее количество гномов могло сидеть за столом?
Ответ дал:
0
Третий раз одно и тоже писать не буду. Сами думайте
Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
9 лет назад