Площадь равностороннего треугольника, вписанного в окружность, равна Q^2. Доказать, что радиус окружности равен (2Q^4√3)/3
Ответы
Ответ дал:
0
Площадь правильного треугольника: S=a²√3/4 ⇒ a=2√S/⁴√3=2Q/⁴√3.
Радиус описанной около правильного тр-ка окружности: R=a√3/3.
R=2Q√3/(3·⁴√3)=2Q·⁴√3/3.
Доказано.
Радиус описанной около правильного тр-ка окружности: R=a√3/3.
R=2Q√3/(3·⁴√3)=2Q·⁴√3/3.
Доказано.
Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
9 лет назад
9 лет назад