катеты прямоугольного треугольника равны 12 см и 16 см. Найдите длину биссектрисы треугольника, проведенную из вершины большего острого угла.
                        
                            
                            
                    Ответы
                                            Ответ дал: 
                                                                                    
                                        
                                            
                                                
                                                
                                                
                                                    0
                                                
                                            
                                        
                                    Ответ: 6√5 см
Пусть в треугольнике АВС угол С=90°, АС=12 см, СВ=16 см, АК - биссектриса.
Решение:
Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
Примем длину СК=х, ВК=у. Тогда х:у=АС:АВ.
По т.Пифагора АВ=√(АС²+ВС²)=√(144+256)=20 ⇒
х:у=12:20=3/5 Следовательно, ВС состоит из х+у=3+5=8 частей. Длина каждой части 16:8=2 см. ⇒ СК=2•3=6 см
Из прямоугольного ∆ АСК по т.Пифагора АК=√(AC²+CK²)=√(144+36)=√180=6√5 см
Приложения:
                    
                            Вас заинтересует
                
                        2 года назад
                    
                
                        7 лет назад
                    
                
                        7 лет назад
                    
                
                        9 лет назад
                    
                
                        10 лет назад