• Предмет: Алгебра
  • Автор: Эндуард
  • Вопрос задан 10 лет назад

Ребят помогите!!! Напишите Несколько тригонометрических уравнений)) На каждый метод желательно по два уравнения))
1) Простейшие тригонометрические уравнения
2) Метод замены переменной
3) Метод разложения на множители

Ответы

Ответ дал: myasha201291
0

1

Пример 1. 2sin(3x - p/4) -1 = 0.

Решение. Решим уравнение относительно sin(3x - p/4). 

sin(3x - p/4) = 1/2, отсюда по формуле решения уравнения sinx = а нахо­дим 

3х - p/4 = (-1)n arcsin 1/2 + np, nÎZ.

Зх - p/4 = (-1)n p/6 + np, nÎZ; 3x = (-1)n p/6 + p/4 + np, nÎZ;

x = (-1)n p/18 + p/12 + np/3, nÎZ

Если k = 2n (четное), то х = p/18 + p/12 + 2pn/3, nÎZ.

Если k = 2n + 1 (нечетное число), то х = - p/18 + p/12 + ((2pn + 1)p)/3 = 

= p/36 + p/3 + 2pn/3 = 13p/36 + 2pn/3, nÎz.

Ответ: х1 = 5p/6 + 2pn/3,nÎZ, x2 = 13p/36 + 2pn/3, nÎZ,

или в градусах: х, = 25° + 120 · n, nÎZ; x, = 65° + 120°· n, nÎZ.

Пример 2. sinx + Öз cosx = 1.

Решение. Подставим вместо Öз значение ctg p/6, тогда уравнение при­мет вид

sinx + ctg p/6 cosx = 1; sinx + (cosp/6)/sinp/6 · cosx = 1;

sinx sin p/6 + cos p/6 cosx = sin p/6; cos(x - p/6) = 1/2. 

По формуле для уравнения cosx = а находим

х - p/6 = ± arccos 1/2 + 2pn, nÎZ; x = ± p/3 + p/6 + 2pn, nÎZ;

x1 = p/3 + p/6 + 2pn, nÎZ; x1 = p/2 + 2pn, nÎZ;

x2 = - p/3 + p/6 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ; 

Ответ: x1 = p/2 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ.

Вас заинтересует