Ответы
Ответ дал:
0
найдите наименьшее и наибольшее значение функции y=cosx
на отрезке [-π3;π]
1) y'=-sinx=0 x=0+π n
x1=0∈[-π3;π] x2=π∈[-π3;π]
y(-π3)=cos(-π3)=1/2
y(0)=cos(0)=1 наибольшее значение функции y=cosx
y(π)=cos(π)=-1 наименьшее значение функции y=cosx
или нарисуйте график функции y=cosx и поймите, что
y(0)=cos(0)=1 наибольшее значение функции y=cosx
y(π)=cos(π)=-1 наименьшее значение функции y=cosx
на отрезке [-π3;π]
1) y'=-sinx=0 x=0+π n
x1=0∈[-π3;π] x2=π∈[-π3;π]
y(-π3)=cos(-π3)=1/2
y(0)=cos(0)=1 наибольшее значение функции y=cosx
y(π)=cos(π)=-1 наименьшее значение функции y=cosx
или нарисуйте график функции y=cosx и поймите, что
y(0)=cos(0)=1 наибольшее значение функции y=cosx
y(π)=cos(π)=-1 наименьшее значение функции y=cosx
Вас заинтересует
2 года назад
2 года назад
6 лет назад
6 лет назад
9 лет назад
9 лет назад
9 лет назад