• Предмет: Геометрия
  • Автор: AlainLapina
  • Вопрос задан 10 лет назад

Диагонали равнобедренной трапеции перпендикулярны. Найдите площадь трапеции, если ее средняя линия равна 7. 

Ответы

Ответ дал: drama46
0

Средняя линия трапеции равна полусумме ее оснований. Обозначив меньшее основание за х, получим, что большее основание равно (14 - х). Тогда диагональ трапеции равна (14-х)/√2 + х/√2 = 14/√2.

Площадь трапеции равна половине произведения ее диагоналей на синус угла между ними. Синус прямого угла равен 1, тогда площадь трапеции равна 1/2* 14/√2*14/√2. = 49.

 

Ответ: 49

 

Вас заинтересует