40 БАЛЛОВ, 1 задание, с рисунком.
Найдите высоту трапеции, если ее диагонали взаимно перпендикулярны и равны
15 и 20.
Ответы
Ответ дал:
0
Площадь любого четырёхугольника равна половине произведениях диагоналей на синус угла между ними.
Т.к. угол между диагоналями равен 90°, то синус угла между ними равен 1.
Тогда = 1/2•15•20•1 = 150.
В трапеции, у которой диагонали перпендикулярны друг другу, средняя линия равна высоте. Площадь трапеции равна произведению высоты на среднюю линию, тогда высота равна √S = √150 = 5√6.
Т.к. угол между диагоналями равен 90°, то синус угла между ними равен 1.
Тогда = 1/2•15•20•1 = 150.
В трапеции, у которой диагонали перпендикулярны друг другу, средняя линия равна высоте. Площадь трапеции равна произведению высоты на среднюю линию, тогда высота равна √S = √150 = 5√6.
Приложения:
Ответ дал:
0
Ой, я только площадь нашёл. Сейчас дорешаю и рисунок скину.
Ответ дал:
0
Такой простой рисунок?
Ответ дал:
0
Да. Но для полного решения лучше все-таки опустить высоту к большему основанию)
Ответ дал:
0
Ага, поняла, спасибо спасли.
Ответ дал:
0
Не за что)
Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
9 лет назад