В цилиндре проведена параллельно оси плоскость, которая отсекает от окружности основания хорду, которую видно из центра этого основания под углом 120 градусов. Высота цилиндра равна 10 см. Найти площадь сечения, если секущая плоскость отдалена от оси на 2 см.
Ответы
Ответ дал:
0
рис. прилагается
(ABCD) | | OO₁ ; ∠AOB =120° ; OO₁ =10 см ; OH ⊥AB ; OH =2 см .
-------
S_(ABCD) -?
ABCD - прямоугольник
S_(ABCD) =AB*AD = AB* OO₁=10AB . Определим хорду AB .
∆OAB равнобедренный (OA = OB =r) , высота OH одновременно и медиана AH =BH =AB /2 и биссектриса * * * ∠AOH =(1/2)∠AOB =60°.* * *
∠ BAO= ∠ABO = (180° - ∠AOB ) /2 =90°- (1/2)∠AOB =90° -60° = 30° .
OH =OA/2 (катет против угла 30°) ⇒ OA =2*OH =2*2 см = 4 см и
AB = 2* AH = 2* √ (OA² -OH²) =2√ (4² -2²) =4√3 (см) .
* * * можно было сразу AB =2* AH = 2*OH*tq60° * * *
S_(ABCD) =10*4√3 = 40√3 (см ²) .
ответ : 40√3 см ² .
(ABCD) | | OO₁ ; ∠AOB =120° ; OO₁ =10 см ; OH ⊥AB ; OH =2 см .
-------
S_(ABCD) -?
ABCD - прямоугольник
S_(ABCD) =AB*AD = AB* OO₁=10AB . Определим хорду AB .
∆OAB равнобедренный (OA = OB =r) , высота OH одновременно и медиана AH =BH =AB /2 и биссектриса * * * ∠AOH =(1/2)∠AOB =60°.* * *
∠ BAO= ∠ABO = (180° - ∠AOB ) /2 =90°- (1/2)∠AOB =90° -60° = 30° .
OH =OA/2 (катет против угла 30°) ⇒ OA =2*OH =2*2 см = 4 см и
AB = 2* AH = 2* √ (OA² -OH²) =2√ (4² -2²) =4√3 (см) .
* * * можно было сразу AB =2* AH = 2*OH*tq60° * * *
S_(ABCD) =10*4√3 = 40√3 (см ²) .
ответ : 40√3 см ² .
Приложения:

Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад