Найдите все значения a, при которых уравнение имеет ровно два решения.
(log7(2x+2a)-log7(2x+2a))^2-8a(log7(2x+2a)-log7(2x-2a)+12a^2+8a-4=0
Ответы
Ответ дал:
0
ОДЗ:
{x>a
{x>-a
Проведем замену
и получим уравнение
t²-8at+12a²+8a-4=0
D=(4a-4)². Случай когда D=0 (a=1) нам не подходит, отметим это, во всех остальных случаях
t1=6a-2
t2=2a+2
Теперь вернемся к замене


Найдем x из первого уравнения:

Проделав такую же штуку со вторым уравнением получим
x_2=frac{a(7^{2a+2}+1)}{7^{2a+2}-1}
Нам нужно чтобы оба корня были решениями, то есть чтобы они принадлежали ОДЗ.
Если а<0, то система которую я записал в самом начале равносильна неравенству x>-a
Нам нужно чтобы оба корня принадлежали одз одновременно
Решаем систему:
{a<0
{x₁>-a
{x₂>-a
В этом случае получаем a<-1.
Пусть теперь а>0, тогда система будет такая
{a>0
{x₁>a
{x₂>a
Получаем а>1/3. Вспоминаем что a≠1 и объединяем решения.
Ответ: a∈(-oo; -1)∪(1/3; 1)∪(1;+oo)
{x>a
{x>-a
Проведем замену
t²-8at+12a²+8a-4=0
D=(4a-4)². Случай когда D=0 (a=1) нам не подходит, отметим это, во всех остальных случаях
t1=6a-2
t2=2a+2
Теперь вернемся к замене
Найдем x из первого уравнения:
Проделав такую же штуку со вторым уравнением получим
x_2=frac{a(7^{2a+2}+1)}{7^{2a+2}-1}
Нам нужно чтобы оба корня были решениями, то есть чтобы они принадлежали ОДЗ.
Если а<0, то система которую я записал в самом начале равносильна неравенству x>-a
Нам нужно чтобы оба корня принадлежали одз одновременно
Решаем систему:
{a<0
{x₁>-a
{x₂>-a
В этом случае получаем a<-1.
Пусть теперь а>0, тогда система будет такая
{a>0
{x₁>a
{x₂>a
Получаем а>1/3. Вспоминаем что a≠1 и объединяем решения.
Ответ: a∈(-oo; -1)∪(1/3; 1)∪(1;+oo)
Вас заинтересует
2 года назад
2 года назад
6 лет назад
6 лет назад
9 лет назад
9 лет назад
9 лет назад