Длина окружности основания цилиндра равна 8
, диагональ осевого сечения - 10. Найдите площадь его полной поверхности.
Ответы
Ответ дал:
0
Длина окружности С=πD=8π ⇒ D=8.
В прямоугольном треугольнике, образованном диаметром основания цилиндра, его высотой и данной диагональю, высота по т. Пифагора равна:
h=√(d²-D²)=√(10²-8²)=6.
Площадь основания: So=πD²/4=64π/4=16π.
Площадь боковой поверхности: Sб=C·h=8π·6=48π.
Площадь полной поверхности цилиндра:
S=Sб+2So=48π+2·16π=80π (ед²) - это ответ.
В прямоугольном треугольнике, образованном диаметром основания цилиндра, его высотой и данной диагональю, высота по т. Пифагора равна:
h=√(d²-D²)=√(10²-8²)=6.
Площадь основания: So=πD²/4=64π/4=16π.
Площадь боковой поверхности: Sб=C·h=8π·6=48π.
Площадь полной поверхности цилиндра:
S=Sб+2So=48π+2·16π=80π (ед²) - это ответ.
Вас заинтересует
2 года назад
7 лет назад
7 лет назад
9 лет назад
10 лет назад