боковое ребро правильной треугольной пирамиды равно 10,а сторона основания равна 6√3.Найдите высоту пирамиды.(очень прошу решите по действиям).
Ответы
Ответ дал:
0
Боковое ребро образует вместе с высотой прямоугольный треугольник, в котором высота катет= h, боковое ребро гипотенуза= 10, а нижний катет является радиусом описанной окружности R того треугольника, что лежит в основани, стороны которого равны между собой и каждая = а= 6*корень из 3.
радиус находим по формуле:
a=R* корень из 3
6*корень из 3= R*корень из 3
R=6.
Теперь найдём высоту по теореме Пифагора:
h^2=10^2-6^2
h^2=100-36
h^2=64
h=8
ОТВЕТ: 8
радиус находим по формуле:
a=R* корень из 3
6*корень из 3= R*корень из 3
R=6.
Теперь найдём высоту по теореме Пифагора:
h^2=10^2-6^2
h^2=100-36
h^2=64
h=8
ОТВЕТ: 8
Вас заинтересует
1 год назад
1 год назад
7 лет назад
9 лет назад
9 лет назад