• Предмет: Геометрия
  • Автор: Аноним
  • Вопрос задан 8 лет назад

в треугольнике ABC AD равно BC. Точки М и Н середины сторон, АВ и ВС. MD и HE перпендикулярна к прямой AC. Докажите что треугольник, АМD равен треугольнику, СНЕ.( можно рисунок)

Ответы

Ответ дал: TanyaSobolevaa99
0
ЕСЛИ AB=BC, ТО ТРЕУГОЛЬНИК РАВНОБЕДРЕННЫЙ.ИЗ ЭТОГО СЛЕДУЕТ, ЧТО УГЛЫ ПРИ ОСНОВАНИИ РАВНЫ.МН СРЕДНЯЯ ЛИНИЯ ТРЕУГОЛЬНИКА И ДЕЛИТ БОКОВЫЕ СТОРОНЫ ПОПАЛАМ.MD=HE,СЛЕДОВАТЕЛЬНО AD=CE.ТАКИМ ОБРАЗОМ AMD=CHE.
Ответ дал: aniabondar
0
Если АВ = ВС, то треугольник АВС равнобедренный. Тогда угол ВСА = углу ВАС. 
Если АВ = ВС, а точки М и Н - середины этих сторон, то АМ = МВ = СН = ВН.
Если MD и HE перпендикулярны к прямой AC, то тругольники МDА и НЕС - прямоугольные. 
У треугольников 
МDА и НЕС:
1) Угол ВСА = углу ВАС
2) АМ = НС
За гипотенузой и катетом треугольник АМD = треугольнику СНЕ.
Приложения:
Вас заинтересует