Ответы
Ответ дал:
0
Найдем производную
f' (x) = (x^3 lnx)' = 3x^2lnx + x^2
x* (3x^2 lnx + x^2) = 2x^3lnx
3x^3lnx + x^3 - 2x^3lnx = 0
x^3lnx + x^3 = 0
x^3 (lnx + 1) = 0
x^3 = 0 ==> x = 0;
lnx = - 1 ==> x = 1/e
f' (x) = (x^3 lnx)' = 3x^2lnx + x^2
x* (3x^2 lnx + x^2) = 2x^3lnx
3x^3lnx + x^3 - 2x^3lnx = 0
x^3lnx + x^3 = 0
x^3 (lnx + 1) = 0
x^3 = 0 ==> x = 0;
lnx = - 1 ==> x = 1/e
Вас заинтересует
2 года назад
2 года назад
6 лет назад
9 лет назад
9 лет назад