В треугольнике ABC угол B=100°, угол A=40°.Точка D принадлежит AC. Причём угол BDC-тупой. Докажите, что AB>BD.
Ответы
Ответ дал:
0
Угол C равен 180 - 100 - 40 = 40°, значит AB = BC.
В треугольнике BDC сторона BD лежит против угла 40°, а BC - против тупого угла. Значит BC>BD и AB>BD.
Вообще говоря, где бы ни находилась точка D, если она не совпадает с А и С, то для угла BDC выполняется условие
40° < ∠BDC < 140°.
То есть этот угол заведомо больше угла С=40°, напротив которого лежит BD. То есть BD заведомо меньше BC и равного ему AB.
В треугольнике BDC сторона BD лежит против угла 40°, а BC - против тупого угла. Значит BC>BD и AB>BD.
Вообще говоря, где бы ни находилась точка D, если она не совпадает с А и С, то для угла BDC выполняется условие
40° < ∠BDC < 140°.
То есть этот угол заведомо больше угла С=40°, напротив которого лежит BD. То есть BD заведомо меньше BC и равного ему AB.
Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
9 лет назад
10 лет назад
10 лет назад