• Предмет: Геометрия
  • Автор: yugolovin
  • Вопрос задан 8 лет назад

В остроугольном треугольнике ABC точки A', B',C' - основания высот, опущенных из вершин A, B, C соответственно. В этом случае треугольник A'B'C' называется ортотреугольником нашего.

Доказать, что ортоцентр (то есть точка пересечения высот) треугольника ABC совпадает с центром окружности, вписанной в его ортотреугольник.

Ответы

Ответ дал: hote
0
В остроугольном треугольнике ABC точки A', B',C' - основания высот, опущенных из вершин A, B, C соответственно. В этом случае треугольник A'B'C' называется ортотреугольником нашего. 

Доказать, что ортоцентр (то есть точка пересечения высот) треугольника ABC совпадает с центром окружности, вписанной в его ортотреугольник.

Решение в приложении
Приложения:
Вас заинтересует