Ответы
Ответ дал:
0
Угол а=180-120=60°
Угол С=90-60=30°
Катет лежащий против угла 30° равен половине гипотенузы. АС=5*2=10 см
Угол С=90-60=30°
Катет лежащий против угла 30° равен половине гипотенузы. АС=5*2=10 см
Ответ дал:
0
1. Т. к DA DB перпендикуляры, следовательно угол MAD=углу DBK
2. Следовательно, треугольники MAD и DBK прямоугольные
3. Точка D середина отрезка МК, следовательно MD=MK
4. Т. к треугольник MNK-равнобедренный, следовательно углы при основании равны
5. Следовательно, треугольники MAD и DBK равны по острому углу и гипотенузе
6. Следовательно, DA=DB
Ч. т. д.
2. Следовательно, треугольники MAD и DBK прямоугольные
3. Точка D середина отрезка МК, следовательно MD=MK
4. Т. к треугольник MNK-равнобедренный, следовательно углы при основании равны
5. Следовательно, треугольники MAD и DBK равны по острому углу и гипотенузе
6. Следовательно, DA=DB
Ч. т. д.
Ответ дал:
0
Решение во вложении. Строим катет, потом перпендикуляр, потом окружность радиусом равную гипотенузе и получаем искомый треугольник.
Ответ дал:
0
Пусть две стороны будут а и b, а медиана — m.
Построим треугольник по трем сторонам:
АВ = а, BD = b, AD = 2m;
Проведем медиану ВА1 и на ее продолжении отложим А1С = А1В;
Проведем сторону АС.
ΔАВС — искомый. Докажем это:
ΔBA1D = ΔCA1A (по 1-му признаку равенства треугольников). Таким образом, АС = BD = b
AB = a
AA1 = AD = 2m : 2 = m АА1 — медиана.
Построим треугольник по трем сторонам:
АВ = а, BD = b, AD = 2m;
Проведем медиану ВА1 и на ее продолжении отложим А1С = А1В;
Проведем сторону АС.
ΔАВС — искомый. Докажем это:
ΔBA1D = ΔCA1A (по 1-му признаку равенства треугольников). Таким образом, АС = BD = b
AB = a
AA1 = AD = 2m : 2 = m АА1 — медиана.
Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
9 лет назад
10 лет назад